Innowacyjne metody inżynieryjne w ocenie jakości i bezpieczeństwa żywności
Okładka tom 36
PDF (English)

Słowa kluczowe

spektroskopia bliskiej podczerwieni
akwapotomika
wielowymiarowa analiza danych
bezpieczeństwo i kontrola żywności

Jak cytować

Veleva-DonevaP., AtanassovaS., & ZhelyazkovG. (2017). Innowacyjne metody inżynieryjne w ocenie jakości i bezpieczeństwa żywności. Zeszyty Naukowe Małopolskiej Wyższej Szkoły Ekonomicznej W Tarnowie, 36(4), 13-23. https://doi.org/10.25944/znmwse.2017.04.1323

Abstrakt

Wzrost poziomu aktywności i jakości życia człowieka zależy od wielu czynników. Jednym z nich jest bezpieczeństwo i wysoka jakość dostarczanej żywności. Postęp, jaki dokonał się w obszarze technologii, technik pomiarowych i narzędzi przetwarzania danych, umożliwił rozwój innowacyjnych metod inżynieryjnych dających gwarancję wysokiej skuteczności kontroli jakości żywności i zdrowia publicznego. W artykule przedstawiono analizę spektralną bliskiej podczerwieni i akwapotomikę jako nieinwazyjne i szybkie metody oceny jakości żywności przez obserwację pasm absorpcji wody.

https://doi.org/10.25944/znmwse.2017.04.1323
PDF (English)

Bibliografia

Atanassova, S. (2015). Near Infrared Spectroscopy and aquaphotomics for monitoring changes during yellow cheese ripening. Agricultural Science and Technology, 7 (2), 269–272.
Zobacz w Google Scholar

Atanassova, S., Veleva, P., Stoyanchev, T. (2017). Near-infrared spectral informative indicators for meat and dairy products bacterial contamination and freshness evaluation. In: A. M. Holban, A. M. Grumezescu (eds). Microbial Contamination and Food Degradation (pp. 315–340). Amsterdam: Elsevier Academic Press. ISBN 9780128112632.
Zobacz w Google Scholar

Balage, J.M., da Luz, E., Silva, S., Gomide, C.A., Bonin, M. de N., Figueira, A.C. (2015). Predicting pork quality using Vis/NIR spectroscopy. Meat Science, 108, 37–43.
Zobacz w Google Scholar

Bázár, G., Kovács, Z., Tanaka, M., Tsenkova, R. (2014). Aquaphotomics and its extended water mirror concept explain why NIRS can measure low concentration aqueous solutions [online, accessed: 2017-10-20]. In: Aquaphotomics, ‘Understanding Water in Biological World’. The 5th Kobe University Brussels European Centre Symposium ‘Innovation, Environment, and Globalisation’, Brussels, Belgium. Retrieved from: http://www.aquaphotomics.com/pdf-posters/nr2.pdf.
Zobacz w Google Scholar

Cattaneo, T., Vanoli, M., Grassi, M., Rizzolo, A., Barzaghi, S. (2016). The aquaphotomics approach as a tool for studying the influence of food coating materials on cheese and winter melon samples. Journal of Near Infrared Spectroscopy, 24, 381–390.
Zobacz w Google Scholar

Cheng, J.H., Dai, Q., Sun, D.W., Zeng, X.A., Liu, D., Pu, H.B. (2013). Applications of non-destructive spectroscopic techniques for fish quality and safety evaluation and inspection. Trends in Food Science & Technology, 34, 18–31.
Zobacz w Google Scholar

Collell, C., Gou, P., Arnau, J., Muñoz, I., Comaposada, J. (2012). NIR technology for on-line determination of superficial a(w) and moisture content during the drying process of fermented sausages. Food Chemistry, 135 (3), pp. 1750–1755.
Zobacz w Google Scholar

Cozzolino, D., Murray, I. (2012). A review on the application of infrared technologies to determine and monitor composition and other quality characteristics in raw fish, fish products, and seafood. Applied Spectroscopy Reviews, 47 (3), 207–218.
Zobacz w Google Scholar

Feng, Y.Z., Sun, D.W. (2013). Near-infrared hyperspectral imaging in tandem with partial least squares regression and genetic algorithm for non-destructive determination and visualization of Pseudomonas loads in chicken fillets. Talanta, 109, 74–83.
Zobacz w Google Scholar

Gowen, A.A., Marini, F., Tsuchisaka, Y., De Luca, S., Bevilacqua, M., O’Donnell, C., Downey, G., Tsenkova, R. (2015). On the feasibility of near infrared spectroscopy to detect contaminants in water using single salt solutions as model systems. Talanta, 131, 609–618.
Zobacz w Google Scholar

Horvat, K., Seregely, Zs., Andrassy, E., Dalmadi, I., Farkas, J. (2008). A preliminary study using near infrared spectroscopy to evaluate freshness and detect spoilage in sliced pork meat. Acta Alimentaria, 37, 93–102.
Zobacz w Google Scholar

Huang, L., Zhao, J., Chen, Q., Zhang, Y. (2014). Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques. Food Chemistry, 145, 228–236.
Zobacz w Google Scholar

Huang, H., Liu, L., Ngadi, M.O. (2016). Prediction of pork fat attributes using NIR images of frozen and thawed pork. Meat Science, 119, 51–61.
Zobacz w Google Scholar

ISO 4833–1:2013. Microbiology of food and animal feeding stuffs: Horizontal method for the enumeration of microorganisms. Colony-count technique at 30 degrees C.
Zobacz w Google Scholar

Jia, B., Yoon, S., Zhuang, H., Wang, W., Li, Ch. (2017). Prediction of pH of fresh chicken breast fillets by VNIR hyperspectral imaging. Journal of Food Engineering, 208, 57–65.
Zobacz w Google Scholar

Kitamoto, M., Kito, K., Niimi, Y., Shoda, S., Takamura, A., Hiramatsu, T., Akashi, T., Yokoi, Y., Hirano, H., Hosokawa, M., Yamamoto, A., Agata, N., Hamajima, N. (2009). Food poisoning by Staphylococcus aureus at a university festival. Japanese Journal of Infectious Diseases, 62 (3), 242–243.
Zobacz w Google Scholar

Kovacs, Z., Bázár, G., Oshima, M., Shigeokad, S., Tanaka, M., Furukawa, A., Nagai, A., Osawa, M., Itakura, Y., Tsenkova, R. (2016). Water spectral pattern as holistic marker for water quality monitoring. Talanta, 147, 598–608.
Zobacz w Google Scholar

Kumar, N., Bansal, A., Sarma, G.S., Rawal, R.K. (2014). Chemometrics tools used in analytical chemistry: An overview. Talanta, 123, 186–199.
Zobacz w Google Scholar

Li, X., Feng, F., Gao, R., Wang, L., Qian, Y., Li, C., Zhou, G. (2016). Application of near infrared reflectance (NIR) spectroscopy to identify potential PSE meat. Journal of the Science and Food Agriculture, 96 (9), 3148–3156.
Zobacz w Google Scholar

Lu, W., Sun, D.W., Pu, H., Cheng, J.H. (2016). Quality analysis and classification and authentication of liquid foods by near-infrared spectroscopy: A review of recent research developments. Critical Reviews in Food Science and Nutrition, 57 (7) 1524–1538. DOI:10.1080/10408398.2015.1115954.
Zobacz w Google Scholar

Matija, L., Tsenkova, R. (2011). Aquaphotomics of hydrogenated fullerenes. In: Book of abstracts of the Second Scientific International Conference on Water and Nanomedicine (pp. 30–31). Banja Luka: Academy of Sciences and Arts of Republic of Srpska.
Zobacz w Google Scholar

Munćan, J. (2011). A comparative study of structure and properties of water by IR and opto-magnetic spectroscopy. In: Book of abstracts of the Second Scientific International Conference on Water and Nanomedicine (pp. 56–57). Banja Luka: Academy of Sciences and Arts of Republic of Srpska.
Zobacz w Google Scholar

Niu, X.Y., Shao, L.M., Dong, F., Zhao, Z., Zhu, Y. (2014). Discrimination of donkey meat by NIR and chemometrics (article in Chinese). Guang Pu Xue Yu Guang Pu Fen Xi, 34 (10), 2737–2742.
Zobacz w Google Scholar

Official Methods of Analysis (2000). 17th ed., AOAC International, Gaithersburg, MD, Method 983.18.
Zobacz w Google Scholar

Reis, M.M., Rosenvold, K. (2014). Early on-line classification of beef carcasses based on ultimate pH by near infrared spectroscopy. Meat Science, 96, 862–869.
Zobacz w Google Scholar

Rouger, A., Remenant, B., Prévost, H., Zagorec, M. (2017). A method to isolate bacterial communities and characterize ecosystems from food products: Validation and utilization as a reproducible chicken meat model. International Journal of Food Microbiology, 247, 38–47.
Zobacz w Google Scholar

Rukchon, C., Nopwinyuwong, A., Trevanich, S., Jinkarn, T., Suppakul P. (2014). Development of a food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta, 130, 547–554.
Zobacz w Google Scholar

Sandorfy, C., Buchet, R., Lachenal, G. (2006). Principles in molecular vibrations for near-infrared spectroscopy. In: Y. Ozaki, W.F. McClure, A.A. Christy (eds). Near infrared spectroscopy in food science and technology (pp. 11–48). Hoboken, NJ: John Wiley & Sons. ISBN 9780471672012.
Zobacz w Google Scholar

Schmid, D., Gschiel, E., Mann, M., Huhulescu, S., Ruppitsch, W., Bohm, G., Pichler, J., Lederer, I., Hoger, G., Heuberger, S., Allerberger, F. (2007). Outbreak of acute gastroenteritis in an Austrian boarding school. Euro Surveillance, 12 (3), 224.
Zobacz w Google Scholar

Teixeira dos Santos, C.A., Lopo, M., Pascoa, R., Lopes, J.A. (2013). A review on the applications of portable near-infrared spectrometers in the agro-food industry. Applied Spectroscopy, 67, 1215–1233.
Zobacz w Google Scholar

Tito, N.B., Rodemann, T., Powell, S.M. (2012). Use of near infrared spectroscopy to predict microbial numbers on Atlantic salmon. Food Microbiology, 32 (2), 431–436.
Zobacz w Google Scholar

Trocino, A., Xiccato, G., Majolini, D., Tazzoli, M., Bertotto, D., Pascoli, F., Palazzi, R. (2012). Assessing the quality of organic and conventionally-farmed European sea bass (Dicentrarchus labrax). Food Chemistry, 131, 427–433.
Zobacz w Google Scholar

Tsenkova, R., 2009. Introduction to Aquaphotomics, dynamic spectroscopy of aqueous and biological systems describes peculiarities of water. Journal of Near Infrared Spectroscopy, 17, 303–314.
Zobacz w Google Scholar

Veleva-Doneva, P. (2017). Аdvanced computer-based approaches for food quality evaluation: updated review. Trakia Journal of Sciences, series Social Sciences, 15 (1), 413–418.
Zobacz w Google Scholar

Veleva-Doneva, P., Draganova, T., Atanassova, S., Tsenkova, R. (2010). Detection of bacterial contamination in milk using NIR spectroscopy and two classification methods—SIMCA and Neuro-Fuzzy classifier. IFAC Proceedings Volumes, 43 (26), 225–229.
Zobacz w Google Scholar

Veleva-Doneva, P., Stoyanchev, T., Daskalov, H., Draganova, T., Atanassova, S. (2012). Informative indicators used for bacterial presence determination in yellow cheese by near-infrared spectral data. Workshop on Dynamics and Control in Agriculture and Food Processing, IFAC 2012 (pp. 55–59).
Zobacz w Google Scholar

Vieira, C., Diaz, M.T., Martínez, B., García-Cachán, M.D. (2009). Effect of frozen storage conditions (temperature and length of storage) on microbiological and sensory quality of rustic crossbred beef at different states of ageing. Meat Science, 83 (3), 398–404.
Zobacz w Google Scholar

Weeranantanaphan, J., Downey, G., Allen, P., Sun, D.W. (2011). A review of near infrared spectroscopy on muscle food analysis: 2005–2010. Journal of Near Infrared Spectroscopy, 19, 61–104.
Zobacz w Google Scholar

Workman, J., Weyer, L. (2008). Practical guide of interpretative near-infrared spectroscopy. Boca Raton, FL: Taylor & Francis. ISBN 1420018310.
Zobacz w Google Scholar

Wu X., Song, X., Qiu, Z., He, Y. (2016). Mapping of TBARS distribution in frozen-thawed pork using NIR hyperspectral imaging. Meat Science, 113, 92–96.
Zobacz w Google Scholar

Xia, X., Kong, B., Liu, Q., Liu, J. (2009). Physicochemical change and protein oxidation in porcine longissimus dorsi as influenced by different freeze-thaw cycles. Meat Science, 83, 239–245.
Zobacz w Google Scholar

Xiong, Z., Sun, D.W., Pu, H., Xie, A., Han, Z., Luo, M. (2015). Non-destructive prediction of thiobarbituricacid reactive substances (TBARS) value for freshness evaluation of chicken meat using hyperspectral imaging. Food Chemistry, 179, 175–181.
Zobacz w Google Scholar

Zhang, Q.Q., Han, Y. Q., Cao, J.X., Xu, X.L., Zhou, G.H., Zhang, W.Y. (2012). The spoilage of air-packaged broiler meat during storage at normal and fluctuating storage temperatures. Poultry Science, 91 (1), 208–214.
Zobacz w Google Scholar

© Copyright by Małopolska Wyższa Szkoła Ekonomiczna w Tarnowie. Artykuły są udostępniane na podstawie Creative Commons Attribution Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Licencja Międzynarodowa

 

Pobrania

Dane pobrania nie są jeszcze dostepne