Application of exponential function for modeling the dynamics of a field beneath a graph representing membership function in fuzzy time series
Okładka tom 7
PDF (Język Polski)

Keywords

fuzzy sets
time-series
system dynamics modelling
computing simulation

How to Cite

Kuznik-UrbanM., & UrbanW. (2005). Application of exponential function for modeling the dynamics of a field beneath a graph representing membership function in fuzzy time series. The Malopolska School of Economics in Tarnow Research Papers Collection, (7), 55-72. https://doi.org/10.25944/znmwse.2005.07.5572

Abstract

An analysis of scalar properties of coefficients constructed for fuzzy numbers is one of the methods used to overcome problems resulting from the multidimensional character of such data. A similar approach was employed to prove, on simulation basis, the viability of combining linear and exponential transformations in modelling the dynamics of a field beneath a graph representing membership function in fuzzy time series generated with difference equations. The paper includes descriptions of both the method used to verify the hypotheses and the conclusions arrived at, also those related to the general formula of such a model.

https://doi.org/10.25944/znmwse.2005.07.5572
PDF (Język Polski)

References

Anile A. M., Deodato S., and Privitera G., Implementing fuzzy arithmetic, Dipartimento Di Matematica, Università Degli Studi Di Catania, Italy, 1994.
View in Google Scholar

Chang W. K., Chów L. R., Chang S. K., Arithmetic operations on level sets of convex fuzzy numbers, Fuzzy Sets and Systems, 1984.
View in Google Scholar

Forrester J. W., Principles of systems, Industrial Dynamics (MIT Press, Cambridge Mass.), 1968.
View in Google Scholar

Hanczar P., Symulowane wyżarzanie - optymalizacja procesów logistycznych [w:] Ekonometria czasu transformacji, pod red. A. S. Barczaka, WU AE, Katowice 1998.
View in Google Scholar

Homer J. B., Why we iterate: scientific modeling in theory and practice, „System Dynamics Review", Spring 1996, vol. 12, s. 1-19.
View in Google Scholar

Kaufmann A., Gupta M. M., Introduction to Fuzzy Arithmetic: Theory and Applications, New York: Van Nostrand, 1985.
View in Google Scholar

Klir G. J., Pan Y., Constrained fuzzy arithmetic: Basic questions and some answers, Soft Computing 2 (1998), no. 2, s. 100-108. 7
View in Google Scholar

Munakata Y, Fuzzy systems: An Overview Communications of the ACM, March 1994, vol. 37, no. 3, p. 69-76.
View in Google Scholar

Navara M., Zabokrtsk'y Z.: Computational problems of constrained fuzzy arithmetic. In: The State of the Art in Computational Intelligence, P. Sinc'ak, J. Vasc'ak, V. Kvasnicka and R. Mesiar (eds.), Physica-Verlag, Heidelberg; New York 2000, p. 95-98.
View in Google Scholar

Resnick R., Halliday D., Fizyka, PWN, Warszawa 1973.
View in Google Scholar

Schuster H. G., Chaos deterministyczny. Wprowadzenie, PWN, Warszawa 1995.
View in Google Scholar

Song Q., Leland R. P. and Chissom B. S., A new fuzzy time-series model of fuzzy number observations, Fuzzy Sets and Systems, August 1995, vol. 73, p. 341-348.
View in Google Scholar

Turksen L. B., Stochastic Fuzzy Sets, A Survey Lecture Notes in Economics and Mathematical Systems series, vol. 310, Springer 1988, p. 168-183.
View in Google Scholar

Urban W., Wykorzystanie teorii grawitacji w analizie funkcjonowania systemów społeczno-ekonomicznych, ZN AE, Kraków 2002.
View in Google Scholar

Urban W., Wprowadzenie do skalarnej analizy chaosu deterministycznego w przestrzeni rozmytych liczb rzeczywistych, ZN AE, Kraków 2001.
View in Google Scholar

Urban W., Podstawy rozmytej dynamiki systemowej, AE, Kraków, 1999.
View in Google Scholar

Wołoszyn J., Urban W., Symulacyjna aproksymacja uwarunkowań numerycznych wykorzystania ogólnej teorii grawitacji do opisu relacji społeczno-ekonomicznych, ZN AE, Kraków 2002.
View in Google Scholar

Wołoszyn J., Urban W., Koncepcja filtru aproksymująco-przeskalowującego w działaniach arytmetyki rozmytej, AE Kraków 2001.
View in Google Scholar

Wołoszyn J., Elementy teorii chaosu deterministycznego w badaniach systemów ekonomicznych, ZN AE nr 551, Kraków 2000.
View in Google Scholar

Wołoszyn J., Grafy rozmyte i możliwości ich wykorzystania w ekonomii, Zeszyty Naukowe AE, Seria specjalna; monografie, nr 90, Kraków 1990.
View in Google Scholar

Zadeh L. A., Fuzzy Logic, Computing with Words, IEEE Transactions on Fuzzy Systems, May 1996, vol. 4, p. 103-111.
View in Google Scholar

Zadeh L. A., Fuzzy Sets and their Application to Pattern Classification and Clustering Analysis in [VanRysin1977].
View in Google Scholar

Zadeh L. A., Fuzzy sets, „Information and Control" 1965, no. 8.
View in Google Scholar

Zieliński J. S., Inteligentne systemy w zarządzaniu. Teoria i praktyka, praca zbiorowa, Wydawnictwo Naukowe PWN, Warszawa 2000.
View in Google Scholar

© Copyright by Małopolska School of Economics in Tarnów. The articles are available under the Creative Commons Attribution NonCommercial-NoDerivatives 4.0 International License

Downloads

Download data is not yet available.